
CS253: Software Development
Welcome to Lecture 12!

Daniel George
October 5, 2023

● Today/this week: deep dive into SQL and data
● Assignment 2 is due on Friday 10/6, midnight CST
● Daniel is here on campus this week in CNS for lectures

Announcements (same as Tuesday)

Group Game!

SQL (Structured Query Language) II

Entity Relationships
● Databases can have multiple tables
● Last class, we saw a table of books and a table of

movies, but these didn’t have any relationship with
each other

● We could have a database has many different tables
inside it — for books, authors, publishers and so on

● In this way, we could have a relational database
(because the tables have relationships between them).
We mentioned last time that SQL was used to query
these databases

Relationship Modeling
● Let’s take our “books” example. Suppose we had

these tables in our database:

Think-Pair-Share Terrapins!

Just looking at these two columns, how can we tell
who wrote which book? What ideas do you have?

Image credit: Prof. Mary
Wootters, Stanford

Two Possible Ways
● The “Honor System”: the first row in the authors table will

always correspond to the first row in the books table. The
problem with this system is that one may make a mistake
(add a book but forget to add its corresponding author, or
vice versa). Also, an author may have written more than one
book or a book may be co-written by multiple authors.

● Going back to a one-table approach: This approach could
result in redundancy (duplication of data) if one author writes
multiple books or if a book is co-written by multiple authors.
Below is a snapshot of the one-table approach with some
redundant data.

One-to-Many Relationship
● Consider this case, where each author writes only one book

and each book is written by one author

One-to-Many Relationship
● On the other hand, if an author can write multiple books…

Many-to-Many Relationship
● Finally, we see a situation where not only can one author

write multiple books, but books can also be co-written by
multiple authors

PRIMARY KEYS
● A primary key is an identifier which is unique for every item

in a table
● In the case of books, every book has a unique identifier

called an ISBN

JOIN
● This operation allows us to combine two or more tables

together. To see this, let’s look at this example database

JOIN
● To find out how far the sea lion Spot travelled, or answer

similar questions about each sea lion, we could use
nested queries. Alternately, we could join the tables sea
lions and migrations together such that each sea lion also
has its corresponding information as an extension of the
same row

● We can join the tables on the sea lion ID (the common
factor between the two tables) to ensure that the correct
rows are lined up against each other

JOIN

SELECT *
FROM “sea_lions”
JOIN “migrations”
ON “migrations”.”id” = “sea_lions”.”id”;

LEFT JOIN

RIGHT JOIN

INNER JOIN

FULL OUTER JOIN

INDEX

SELECT *
FROM “table”
WHERE “year” = 2023;

Here is a query we have seen before. What happens when
we run this query? Under the hood, the table is scanned
top-to-bottom, one row at a time.

CREATE INDEX

● We can create an index on a column to make queries
run much faster

CREATE INDEX “title_index”
ON “movies” (“title”);

Think-Pair-Share Terrapins!

Suppose I told you that there are tradeoffs involved
with indexes (it seems we can’t ever win!). What
questions would you have about indexes to help
understand this? If indexes make queries faster, what
could that tradeoff include?

How Indexes are Implemented [extra info]

Indexes are implemented using a data structure called a B-tree

How Indexes are Implemented [extra info]
If the movie titles were sorted alphabetically, it would be a lot easier
to find a particular movie by using binary search (for more, take
CS354!)

Practice

What are your questions?

Thank you!

