
CS253: Software Development
Welcome to Lecture 14!

Daniel George
October 17, 2023

● Please vote (this is required!) for your top choices for
class project!

● Today: object-oriented programming

Announcements

Object-Oriented Programming
● Last week, we talked about software engineering

process: agile, iterative, and flexible
● To that end, how can we write code, concretely, which

supports this new paradigm?
● Older programming languages (C, C++) asked the

question: “what should this program do next”?
○ Split into tasks and sub-tasks
○ Make functions for the tasks
○ Instruct the computer to perform them sequentially

Object-Oriented Programming
● But…with large numbers of tasks, and large amounts

of data, this can get unwieldy
● To see this, suppose we were trying to model the

operation of a car, in code.
● Such a program would have lots of separate

variables storing information on various car parts,
and there’d be no way to group together all the code
that relates to, say, the wheels.

● It’s hard to keep all these variables and the
connections between all the functions in mind.

Object-Oriented Programming
● To manage this complexity, it’s nicer to package up

self-sufficient, modular pieces of code.
● People think of the world in terms of interacting

objects: we’d talk about interactions between the
steering wheel, the pedals, the wheels, etc.

● OOP allows programmers to pack away details into
neat, self-contained boxes (objects) so that they can
think of the objects more abstractly and focus on the
interactions between them.

Object-Oriented Programming
● Three primary features of OOP:

○ Encapsulation: grouping related data and
functions together as objects and defining an
interface to those objects

○ Inheritance: allowing code to be reused between
related types

○ Polymorphism: allowing a value to be one of
several types, and determining at runtime which
functions to call on it based on its type

Encapsulation
● Encapsulation just refers to packaging related stuff

together. We’ve already seen how to package up data and
the operations it supports in Python: with classes.

● If someone hands us a class, we do not need to know how
it actually works to use it; all we need to know about is its
public methods/data – its interface.

● This is often compared to operating a car: when you drive,
you don’t care how the steering wheel makes the wheels

● turn; you just care that the interface the car presents (the
steering wheel) allows you to accomplish your goal.

Encapsulation
● This is why, in Python, you can specify public and private

attributes: by default, it assumes that the things you define
in a class are internal details which someone using your
code should not have to worry about. The practice of hiding
away these details from client code is called “data hiding,”
or making your class a “black box.”

● One way to think about what happens in an object-oriented
program is that we define what objects exist and what each
one knows, and then the objects send messages to each
other (by calling each other’s methods) to exchange
information and tell each other what to do.

Inheritance
● Inheritance allows us to define hierarchies of

related classes.
● Imagine we’re writing an inventory program for

vehicles, including cars and trucks. We could write
one class for representing cars and an unrelated one
for representing trucks, but we’d have to duplicate the
functionality that all vehicles have in common.

● Instead, Python allows us to specify the common
code in a Vehicle class, and then specify that the Car
and Truck classes share this code.

Inheritance
class Vehicle:
 def __init__(self, myLicense, myYear):
 self._license = myLicense
 self._year = myYear

 def getDesc(self):
 return f"{self.license} from

 {str(self.year)}"

 def getLicense(self):
 return self._license

 def getYear(self):
 return self._year

private
and
public

Inheritance

class Car(Vehicle):
 def __init__(self, myLicense, myYear, myStyle):
 super().__init__(myLicense, myYear)
 self.style = myStyle

 def getStyle(self):
 return self.style

Inheritance
● Now class Car has all the data members and

methods of Vehicle, as well as a style data member
and a getStyle method.

● Class Car inherits from class Vehicle. This is
equivalent to saying that Car is a derived class,
while Vehicle is its base class.

● You may also hear the terms subclass and
superclass instead.

Inheritance
● Similarly, we could make a Truck class that inherits

from Vehicle and shares its code. This would give a
class hierarchy like the following:

Inheritance
● Now class Car has all the data members and

methods of Vehicle, as well as a style data member
and a getStyle method.

● Class Car inherits from class Vehicle. This is
equivalent to saying that Car is a derived class,
while Vehicle is its base class.

● You may also hear the terms subclass and
superclass instead.

Is-a vs. Has-a
● There are two ways we could describe some class A as

depending on some other class B:
○ Every A object has a B object. For instance, every

Vehicle has a string object (called “license”).
○ Every instance of A is a B instance. For instance, every

Car is a Vehicle, as well.
● Inheritance allows us to define “is-a” relationships, but it

should not be used to implement “has-a” relationships. It
would be a design error to make Vehicle inherit from
“string” because every Vehicle has a license; a Vehicle is
not a string. “Has-a” relationships should be implemented
by declaring data members, not by inheritance.

Polymorphism
● Polymorphism means “many shapes.” It refers to

the ability of one object to have many types.
● If we have a function that expects a Vehicle object,

we can safely pass it a Car object, because every
Car is also a Vehicle.

Polymorphism

def process_vehicle(vehicle):
 print(f"License: {vehicle.getLicense()}")
 print(f"Year: {vehicle.getYear()}")

car = Car("Daniel’s Kia", 2023, "Sedan")
process_vehicle(car)

Think-Pair-Share Terrapins!

Given what you just learned about object-oriented
programming, what do you think are its advantages
and disadvantages? When would it be useful to use
OOP and when would it not?

Practice

What are your questions?

Thank you!

