
CS253: Software Development
Welcome to Lecture 2!

Daniel George
August 31, 2023

● Thanks for completing Assignment 0!
● Today: review of Python and introduce testing

Announcements

Roadmap

Unit Tests

Object-Oriented
Programming

Intro to
Networking

Design
Patterns

Debugging

Deployment

Technical
Writing

We are
here!

Git

● In CS253, we will be focusing on creating web-based
applications, meaning: computer programs that are made
available via the Internet

● To do this, we will need to build on our coding knowledge
from CS127/128

Before we start: a Note about “Full Stack”

● In the process, we are going to learn about lots of things,
broadly referred to as (not an exhaustive list):
○ Front-end: what you can see
○ Back-end: what you can’t see
○ Data: where and how things are stored
○ Deployment: how to make things available to others
○ Networking: how computers communicate
○ Security: how to keep things safe

● Taken together, these aspects of an application represent
the “full stack” of the application

Before we start: a Note about “Full Stack”

That’s it for announcements and recap. On to
Python! But first…what are your questions.

Python (back-end programming)

● Invented by Guido van Rossum, Dutch computer scientist
● First version released in 1991
● Implemented in the C programming language
● Python is a dynamic language useful for many different

things (data science, algorithms, and also programming
applications)

Python Review

Get curious! What is a
“dynamic” programming
language?

● While loop
i = 0
result = 0
while i < 10:
 result += i
 i += 1
return result

● If statement
cs253_is_fun = True
if Cs253_is_fun == True:
 print(“woo!”)

Python Review

● For loops
i = 0
result = 0
for i in range(10):
 result += i
return result

● Functions
def func(x):
 x += 10
 return x

Python Review

● Decomposition
def get_query_text()
def save_username()
def post_result()

● Assignment and Comparison
== operator vs. =

● Boolean values
and, not, or

Python Review

Is there an operator
for “does not equal”?

● Strings
s = “Illinois Wesleyan”
s[4:8] = “nois”

● print()
print(s)
>>> Illinois Wesleyan

Python Review

● Lists
animals = [“quokka”, “dikdik”, “axolotl”]

● Dicts
daniel = {“location”: “Los Angeles”, “eye
color”: “blue”}

● Sorting
nums = [1,9,6,7,5,4,2,3,0,8]
nums = sorted(nums)
[0,1,2,3,4,5,6,7,8,9]

Python Review

What is the output?

>>> 20 - 5 + 2

Answer:

Python Review

What is the output?

>>> 20 - 5 + 2

Answer:

>>> 17

Python Review

What is the output?

>>> 57 // 10

Answer:

Python Review

What is the output?

>>> 57 // 10

Answer:

>>> 5

Python Review

What is the output?

>>> s = “autumn”
>>> s[2:]

Answer:

Python Review

What is the output?

>>> s = “autumn”
>>> s[2:]

Answer:

>>> “tumn”

Python Review

What is the output?

>>> d = {'c': 4, 'a': 5, 'd': 13, 'b': 2}
>>> sorted(d.keys())

Answer:

Python Review

What is the output?

>>> d = {'c': 4, 'a': 5, 'd': 13, 'b': 2}
>>> sorted(d.keys())

Answer:

>>> ['a', 'b', 'c', 'd']

Python Review

Given a list of int values, compute a list of
each value multiplied by 10.

Example:
>>> nums = [2, 7, 20]
yields: [20, 70, 200]

Answer:

Python Review

Given a list of int values, compute a list of
each value multiplied by 10.

Example:
>>> nums = [2, 7, 20]
yields: [20, 70, 200]

Answer:

[val * 10 for val in nums]

Python Review

Given a list of strings, compute a list where
each string is converted to uppercase and a '!'
is added at its end.

Example:
>>> strs = ['is', 'Mystery', 'How']
yields: ['IS!', 'MYSTERY!', 'HOW!']

Answer:

Python Review

Given a list of strings, compute a list where
each string is converted to uppercase and a '!'
is added at its end.

Example:
>>> strs = ['is', 'Mystery', 'How']
yields: ['IS!', 'MYSTERY!', 'HOW!']

Answer:

[s.upper() + '!' for s in strs]

Python Review

Testing

What is “testing”?

● Testing a small “unit” (a component of logic) of code. Unit testing
is associated with test-driven development, which is a way of
approaching software engineering so that the tests are written
before the actual code.

● But, in my experience, this isn’t strictly adhered to in industry
settings (i.e., it’s more often that code is written first and tested
afterward). In this class, you are free to approach code by either
writing tests before your code, or the other way around.

Unit Testing

Unittest Example (in notebook)

● Regression
○ Ensures that new changes haven't introduced new bugs or

issues
● Performance

○ Also called load or stress testing. Evaluates the
responsiveness, latency, scalability, and stability under
various load conditions.

● Integration
○ Tests different modules, components, or subsystems to

ensure they work together properly. An example could be
testing that backend code which retrieves results from a
database is doing it as expected (very common).

Other Kinds of Testing

● Security
○ Identifies vulnerabilities and weaknesses that could potentially

lead to security breaches
● Smoke

○ Tests basic functionalities to make sure the build is working
correctly

Other Kinds of Testing

Practice

What are your questions?

Thank you!

