
Project Requirements
Every project should meet the following requirements. We will discuss a few aspects of
these requirements in more detail during the early weeks of working on the project (these
are marked with * stars). If you're ever unsure of what something here specifically requires,
just ask!

Functionality

The application should be functional, with a full set of completed features as laid out in your
user stories.

Teamwork

All teams will:

● Have a leader position that rotates through the members of the team, changing each
week. The leader is responsible for tracking and coordinating work during their
tenure as leader, and they will submit the iteration report at the end of each iteration.
(If a team decides together to assign a leader in a different fashion, they need to
check with me first.)

● Hold at least one meeting per week outside of class to discuss progress, make
plans, share and explain code, and do whatever else helps make progress as a team.

● Select and use some form of group messaging (slack, groupme, texts, or otherwise).

Github

Code must be hosted on Github. Commits should be logical and well-structured, tracking
changes to the code over time, explained with meaningful commit messages, showing
which team member developed what, etc.

Teams should track user stories to be completed, bugs to be fixed, and other tasks using
Github Issues. When a task is assigned to a team member, the corresponding issue should
be assigned to that person. Use comments within each issue to ask questions, discuss
details, and keep track of any decisions made about it over time.

Your team should use the "Github flow" for using Git as a team. This means using separate
branches (separate from main) for each new feature/bugfix/enhancement, and uses pull
requests to merge them back into main. Every pull request must be reviewed by at least
one other team member (other than the one who authored it). See Using Git in a Team.

Testing

https://sun.iwu.edu/~mliffito/cs_codex/posts/git-teamwork/


All Python code should be tested by a suite of unit tests.

Every person who develops a new feature should also write and commit unit tests for that
feature at the same time. Every pull request adding a feature should contain unit tests for it
(if applicable. If you have questions about this, ask Daniel or Anna).

Accessibility

The application's page(s) should be accessible, following the accessibility guidelines we
studied early in the semester.

User Interface *

The UI should be well-designed, following the guidelines for good, usable user interface
design. It should be attractive, clean, consistent, clear, understandable, and overall usable.

Security *

The application should be free of any security issues we discuss in class. This includes
being free of SQL injection vulnerabilities and storing passwords securely.

* means we will be covering this in more detail as the project progresses.


